
Content based image retrieval using the knowledge of texture, color in
 binary tree structure

Zahra Mansoori, Mansour Jamzad
Z_mansoori@ce.sharif.edu, Jamzad@sharif.edu

Sharif University of technology, Tehran, Iran

ABSTRACT

Content base image retrieval is an important research field
with many applications. This paper presents a new approach
for finding similar images to a given query in a general-
purpose image database using content-based image retrieval.
Color and Texture are used as basic features to describe
images. In addition, a binary tree structure is used to
describe higher level features of an image. It has been used
to keep information about separate segments of the images.
The performance of the proposed system has been compared
with the SIMPLIcity system using COREL image database.
our experimental results showed that among 10 image
categories available in COREL database, our system had a
better performance (10% average) in four categories, equal
performance in two and lower performance (7% average)
for the remaining four categories.

Index Terms— Content-based Image retrieval, Color,
texture, Binary Tree Partitioning

1. INTRODUCTION

In recent years, content-based image retrieval (CBIR)
has played an important role in many fields, such as
medicine, geography, weather forecasting, security, etc.
These approaches are based on visual attributes of images
such as color, texture, shape, layout and object. Most of the
content-based image retrieval systems are designed to find
the top N images that are most similar to the user query
image [1, 2].

In this paper the approach is to combine color, Texture
and a customized binary partitioning tree in order to find the
images similar to a specific query image. The above
mentioned tree is a customized binary partitioning tree
which keeps a combination of color and layout information
of an image. To extract color information, two histograms of
the image in HSV mode are used with 360 and 100 bins.
Also a 2-levels Wavelet decomposition of separated image
blocks is used to attain texture. The binary tree is used to
maintain information about separated regions of the image.

2. OVERALL STRUCTURE

The overall structure of almost all CBIR systems typically
consist of two Independent parts: Feature Extraction and

Retrieval. The first part extracts visual information from the
image and saves them in a database, where the second part
searches the maintained information based on defined
conditions to find the matching images from database. The
details of composition and functionality of these parts vary
among different systems.

The overall structure of a typical image retrieval system
is shown in Fig.1, which has seven separated parts: 1. Image
database consisting of hundreds or thousands of images
among which a query image is searched; 2. Feature
Extraction which retrieves features from images and sends
them to appropriate parts; 3. Database of extracted features
received from part 2; 4. Query image which is an image
input by the user in order to get the similar images; 5.
Feature Vectors of query image extracted by part 2; 6.
Search and retrieval part which searches the Feature Vectors
database in order to get similar images to query image; 7.
User interface which shows the retrieved images from part
6.

Fig.1. Overall structure of an image retrieval system (from]3 ,4[)

In the proposed approach, feature extraction is divided
into two levels, low level feature extraction that extracts
Color and Texture features, and the description of Binary
Tree Structure in retrieval process.

3. FEATURE EXTRACTION

Technically, any image can be considered as a 2-
Dimonsional array of pixels. Feature extraction is a way to
show visual information of an image in scale of numbers so
they can be analogous.

4. Query
Image

5. Query
Image F.V.

1. Image DB

3. F.V.s DB

6. Search and Retrieval

7. End user

2. Feature Extraction

3.1. Color Extraction

Color is represented in a 3-channel color space. There are
various color spaces such as RGB, HSV, YCbCr, CIE LAB,
CIE LUV, etc. however, no color space is dominant in all
applications. In this paper, the HSV color space is used
because it is a perceptual color space. That is, the three
components H (Hue), S (Saturation) and V (Value)
correspond to the color attributes closely associated with the
way that the human eye perceives the color. Hue indicates
the type of color, such as red, green and blue, which
corresponds to the dominant wavelength of a given
perceived color stimulus. Saturation refers to the strength of
a color. A fully saturated color contains only a single
wavelength. The color becomes less saturated when white
light is added to it. Value (or intensity) is the amount of
light perceived from a given color sensation. White is
perceived to be maximum intensity and black to be the
minimum intensity

The approach here is two extract two histograms, one for
Hue and one for Saturation. Due to the fact that the Value
dimension of color in HSV is too variant by lightness degree
of photography, so it is not a valid measure to judge how
two images are similar, so it is not considered in calculation.
The Hue circle of HSV color space has been quantized into
360 degrees, and saturation into 100 levels. Thus the
corresponding histograms have 360 and 100 bins.

3.2. Texture Extraction

Texture is a key component of human visual perception.
Like color, texture is an essential feature to be considered
when querying image databases [5]. Generally speaking,
textures are complex visual patterns composed of entities, or
sub-patterns which have characteristic brightness, color,
slope, size, etc. Therefore texture can be regarded as a
similarity grouping in an image [6].

For texture extraction, Wavelet decomposition of image
blocks is used. By imposing Wavelet on a gray-level image,
four sub images will be produced, which is a low resolution
copy (Approximation) image, and three-band passed filters
in specific directions: horizontal, vertical and diagonal
respectively. These sub images contain useful information
about image texture characteristics. To have a numerical
presentation of the texture, mean and variation of these
images will be calculated.
Final feature vector will be gained by 1. Dividing image into
8×8 = 64 equal blocks; 2. Applying Wavelet on each block.
3. Calculating Mean and Variation of each block and
concatenating them, separately; 4. Concatenating all
obtained feature vectors to achieve two feature vectors
describing texture information.

3.3. Binary Partitioning Tree

A Binary Partition Tree is a structured representation of the

regions of an image. An example is shown in Fig.2. The
leaves of the tree represent regions belonging to the initial
partition (partition 1) and the remaining nodes represent
regions that are obtained by merging the regions represented
by the two children of a node. The root node represents the
entire image. This representation should be considered as a
compromise between representation accuracy and
processing efficiency. The main advantage of the tree
representation is that it allows the fast implementation of
sophisticated partitioning process [8].

Fig.2. An example of Binary Partition Tree creation with a
region merging algorithm (derived from [8])

In this paper, a simplified and efficient use of binary tree

has been proposed. There are some important considerations
in the way to create the partitioning tree to obtain better
performance.

3.3.1. Image Partitioning

There are various ways to partition an image into separate
regions, but the most important consideration is that each
partition should be meaningful, which in best case, contains
dedicated information about an object. An object may have
a homogeneous color [8], Color & texture [9] or none which
in this case, defining an object may be impossible and this
case can be eliminated. The approach of this paper is based
on color homogeneity; batches of similar colors will signify
objects/regions. This is achieved by using safe color cube as
a primary color palette. It is demonstrated that this palette
works well as it covers RGB color space as well, which after
quantization, well equivalent of row image will be gained.

Safe Color Cube consists of 216 colors in RGB mode;
each R, G and B can only be 0, 51, 102, 153, 204 or 255.
Thus, RGB triples of these values give us (6)3 = 216
possible values [10] (Fig. 3.). To represent a picture, for
each pixel or batch of pixels the equivalent color in the
palette will be found and replaced. For better precision,
mean of a batch of pixels should be used. New color will be
replaced with the old one. This process is called
quantization. By having an image with 216 specific colors,
it is expected to have distinctive regions with homogeneous
color. By converting this image to gray-scale, we have a
partitioned image. The number of possible gray-levels will
be 216.

3.3.2. Tree Construction

To construct a binary tree, the algorithm starts from an
arbitrary region as the first node and chooses a neighbor
region as its sibling and these nodes will be added as
children of their parent node. This process will be repeated
until all regions have been added to the tree.

To construct the binary tree an important point is that the
trees must be comparable with each other. One way to
achieve this is to define a fixed template for trees such that
the comparison will be done node by node. The constrains
of constructing the trees is to define 1. Maximum levels of
the tree and 2. Maximum regions that the image will be
partitioned at each level of partitioning. Doing this, all
images are represented by identical trees with equal number
of levels and nodes. The remaining problem is whether two
similar images will produce the same trees? How different
the trees will be if their corresponding images had little
differences. It is possible that in each level, the region in
two similar pictures are segmented differently, so the
starting points at each level will be different and the
resulting trees may be completely or partially incomparable.

The technical solution for the problem of similar images
is to define fixed regions at the starting point, away from
previously mentioned partitioning.

If the size of these fixed-sized regions is large, the
problem still remains; if they are small, the presence of the
tree is meaningless. The trade off may be to initialize
constructing by fixed size regions like what we used for
texture extraction approach. The approach here is to divide
the image into equal-sized regions and creating a distinct
tree for each region. Fig.3 shows an iterative algorithm for
tree construction, inputs are 1. Colored image and 2.
Number of maximum growing levels of tree, and the output
is a tree, representing the image.

INITIALIZE (MaximumTreeLevels, MaximumRegions)
GrayImage = LebeledBySafeColors (Image)
MaxTreeL = MaximumTreeLevelsDefines
MaxReg = MaximumRegions

BINARYTREE_ITERATIVE_CONST(GrayImage, 0)

BINARYTREE_ITERATIVE_CONST(GrayImage, CurrentTreeL)

If CurrentTreeL = MaxTreeL
Return

Save(BINARY TREE_GETPROPERTIES (GrayImage))

GMin = MinimumGrayLevelsOf (GrayImage)
GMax = MaximumGrayLevelsOf (GrayImage)
GStepsizes = (MaxG – MinG) / MaxReg

For i = 1 to MaxReg

LowestG = (i – 1) * GStepsizes + GMin
HighestG = i * GStepsizes + GMin
SubImage=FilterGrayLevels (GrayImage, LowestG, HighestG)
BINARYTREE_ITERATIVE_CONST(SubImage,CurrentTreeL+1)

End

Fig.3. Pseudo code algorithm for binary tree construction

3.3.3. Features

Final feature extraction will be the mean color and the
surface of the regions at each node (internal or leaves).
Surface is the number of pixels in a region, if all images are
normalized then it means we have equal sizes. Due to usage
of SIMPLicity database for comparison, all images have
approximately the same size so it is safely assumed that the
whole database is normalized.

4. SEARCH AND RETRIEVAL

After extracting features, the second main responsibility of
an image retrieval system is 'Search and retrieval'. It is
assumed that feature space is a multidimensional space and
images are scattered based on the value of their feature
vectors, so more similar the feature vector, closer are images
in this space. The Search process is to get feature vectors of
an input image called 'Query' or 'Feed' [11] and retrieve the
images in the neighborhood of that in feature space. This
search strategy is called nearest-neighborhood [12]. If we
assume that two images of database are more similar than
the others, their feature vector should have a minimum
distance; so the similarity has a reversed relationship with
the distance. So by having the difference of feature vectors
of two images, the similarity of them will be known.

4.1. Distance measure

The difference of two feature vectors should be defined in a
way that it appears perfectly as it has close relationship to
the type of feature. Most of the difference formulas are a
variation of Minkowski difference. The Minkowski distance
for two vectors or histograms ~k and ~l with dimension n is
given by equation (7) [3].

𝐷ெ
ఘ

൫𝑘ത, 𝑙൯̅ = (෍|𝑘௜ − 𝑙௜|ఘ

௡

௜ୀଵ

)ଵ/ఘ (7)

Color histogram is usually measured by 𝜌 = 1 [13, 14],
so this measure is used in our approach too. For texture
level, two of the remaining distances have been used. This
form is called Euclidean distance.

Binary tree is a special case due to the type of its
features. There is a Matrix of 3-dimentional colors and an
array of surfaces. For color distance, the distance between
colors of each node is calculated by using Euclidean
distance and finally the results have been aggregated. For
the surface the same distance metric as histogram has been
used.

There may be a case that a specific region assigned to an
internal node has a unique gray level such that it could not
be divided into some sub-regions and one of its children in
binary tree may have zero value for Color and Surface
property. At the time of calculating the difference, these
nodes will not be accounted and the judgment is based on its
higher levels or its sibling.

4.2. Final Query Ranking

Finally, the feature distances should be summed in order to
have a final distance. The prerequisite for this operation is
normalization in each feature level, by dividing all distance
values of a specific feature to the maximum gained distance.

Adding all the difference values gets a measure of how
an image is different from the query image. By reversing
this value, the 'Rank' of each image will be calculated. The
most k high-rank images will be chosen to display to the
user.

The main issue for each feature at the retrieval level is
how efficient it is; in other words how much of the
performance of the system depends on it. To make it clear
there are coefficients assigned to each feature vector.

Final ranking will be achieved from equations (8) ~ (11).
𝑟௜ = 𝑟௜,஼௢௟௢௥ + 𝑟௜,்௘௫௧௨௥௘ + 𝑟௜,஻்௥௘௘ (8)

𝑟௜,஼௢௟௢௥ = 𝑅஼௢௟௢௥ . 𝑆௜,஼௢௟௢௥ (9)

𝑆௜,஼௢௟௢௥ = 1/𝐷𝑠௜,஼௢௟௢௥ (10)

𝐷𝑠௜,஼௢௟௢௥ =
𝐷௜,஼௢௟௢௥

𝑀𝐴𝑋 ൫𝐷௜,஼௢௟௢௥൯

(11)

Where in 8, ri is final rank of ith image, 𝑟௜,஼௢௟௢௥ ,
𝑟௜,்௘௫௧௨௥௘, 𝑟௜,஻்௥௘௘ are ranks of Color, Texture and Binary
Tree features, respectively. For instance, 𝑟௜,஼௢௟௢௥ is extended
in (9). 𝑅஼௢௟௢௥ is the coefficient of Color feature. 𝑆௜,஼௢௟௢௥ is
the similarity measure between the ith image and query
image in case of Color. As shown in (10), it is reversely
dependent to distance; 𝐷𝑠௜,஼௢௟௢௥ means the distance of ith
image from query image. In (11) normalization is carried on
by dividing the row difference of both feature vectors to the
maximum in their fields.

5. SYSTEMATIC EVALUATION

This system has been compared to SIMPLicity [15] which
is an image retrieval system which uses color, texture,
shape, and location. This system was evaluated based on a
subset of the COREL database, formed by 10 image
categories (shown in Table 2), each containing 100 pictures.

ID Category Name ID Category Name
1 Africa people & villages 6 Elephants
2 Beach 7 Flowers
3 Buildings 8 Horses
4 Buses 9 Mountains & glaciers
5 Dinosaurs 10 Food

Table 2. COREL categories of images tested

Within this database, it is known whether any two
images belong to the same category. In particular, a
retrieved image is considered a match if and only if it is in
the same category as the query. This assumption is
reasonable since the 10 categories were chosen so that each
depicts a distinct semantic topic. Every image in the sub-

database was tested as a query and the retrieval ranks of all
the rest images were recorded. Three statistics were
computed for each query: 1) the precision within the first
100 retrieved images, 2) the mean rank of all the matched
images, and 3) the standard deviation of the ranks of
matched images.

The recall within the first 100 retrieved images is
identical to the precision in this special case. The total
number of semantically related images for each query is
fixed to be 100.The average performance for each image
category is computed in terms of three statistics: p
(precision), r (the mean rank of matched images), and σ (the
standard deviation of the ranks of matched images).

6. EXPERIMENTAL RESULT

The result of partitioning a sample image with 216-color
palette is presented in Fig.4. After some experiments, the
number of tree levels and number of regions is set to 4 and
2, respectively. By choosing these parameters, the number
of empty regions has been reduced to minimum and each
partitioned region will represent the image suitably.

(a)

(b)

Fig.4. Binary Tree Construction: (a) original image (b) gray
level of quantized image using 216-color palette

In order to obtain the system performance, the first step

is to define the importance of each feature. This has been
done in a step by step procedure. At first, color has been
tested with custom coefficients, in the second step a test on
both color and texture is done by assigning random
coefficients to texture. In the next step, the binary tree has
been added to feature lists and proper coefficients have been
assigned to it. The properties of each feature vector and their
coefficients are listed in Table 3.

i Visual Descriptor Feature Vector Importance

(Ri)
1 Color 360-bin Hue Hist 68%
2 100-bin Sat Hist 14%
3 Texture Wavelet Mean 6%
4 Wavelet Var 6%
5 Binary Partitioning

Tree
Color Mean 3%

6 Surface 3%
Table 3. Information of the features used in this approach

It should be noted that the extended formulas (8)~(11) are

written using nominal feature vectors. In fact, there are more
than three features, which are listed in Table 3.

The hue histogram with highest importance is used as a
filter to detect related or nonrelated images in retrieval
process. Three statistic parameters have been calculated for
each category of image database. The comparison results are
shown in Fig.5-7.

Fig.5. Comparing both systems on average precision for 10
categories

Fig.6. Comparing both systems on average rank of matched images
in 10 categories

Fig.7. Comparing both systems on average rank of matched images
in 10 categories

The approach in Simplicity is based on comparison of

shape. But in the proposed method, the comparison
approach is based on color, texture and the effect of
background (that is considered by a binary tree
representation of the entire image). Since in buses category
the effect of all above mentioned three factors are present, it
is expected that the proposed method shows a better
performance than Simplicity. Our experimental results
showed this for both busses and also the food categories.

To have a measure to understand how important binary
tree is, three different coefficients have been assigned to this
feature: 0% (means don't care), 45% (about half) and 3%.

The schematic is shown in Fig.8. In present system the
coefficient of 3% is used for binary tree.

Fig.8. Effectiveness of binary tree in retrieval process

Some query results are shown in Fig. 9.

Cat 1: 12 out of 14 corrects

Cat 2: 12 out of 14 corrects

Cat 3: 11 out of 14 corrects

Cat 4: 14 out of 14 corrects

Cat 5: 14 out of 14 corrects

0

0.2

0.4

0.6

0.8

1

A
ve

ra
ge

 P
re

ci
si

on

System Comparison Prefered System

 SIMPLicity

1 2 3 4 5 6 7 8 9 10

0

50

100

150

200

250

300

A
ve

ra
ge

 R
an

k

System Comparison Prefered System

SIMPLicity

1 2 3 4 5 6 7 8 9 10

0

50

100

150

200

250

300

١ ٢ ٣ ۴ ۵ ۶ ٧ ٨ ٩ ١٠

A
ve

ra
ge

 S
ta

nd
ar

d
de

vi
at

io
n

of

R
an

ks

System Comparison Prefered System

SIMPLicity

1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

١ ٢ ٣ ۴ ۵ ۶ ٧ ٨ ٩ ١٠

A
ve

ra
ge

 p
re

ci
tio

n

BTree importance in retrieval
R = 3% R = 45% R = 0%

1 2 3 4 5 6 7 8 9 10

Cat 6: 9 out of 14 corrects

Cat 7: 14 out of 14 corrects

Cat 8: 14 out of 14 corrects

Cat 9: 12 out of 14 corrects

Cat 10: 14 out of 14 corrects

Fig.9. some query Examples. In each category, the upper left
image is the query image and the remaining are retrieved images.
The query image has been chosen from DB so the first image has
been accounted as the first retrieved image with highest rank.

7. CONCLUSION

The system presented here has better performance in four
categories, worse in four categories and equal in two
categories in comparison to SIMPLicity.

It can be said that binary tree is good for increasing the
performance in categories which have more similar pictures
(for example several photos of a unique scene). It is
predictable because of high level of feature extraction used
to extract this feature, also, it has better result in categories
with similar background, and it is because of blocking effect

which extracts semi-equal feature vectors from the
background of these images.

8. REFERENCES

[1] W. M. a. H. J. Zhang, Content-based Image Indexing and
Retrieval: CRC Press, 1999.
[2] e. M. Flickers. H. Sawhney, "Query by Image and Video
Content: The QBIC System," IEEE Computers, 1995.
[3] Gevers Th. and Smeulders A.W.M., "Image Search
Engines, An Overview," The International Society for Optical
Engineering (SPIE), vol. VIII, pp. 327--337, 2003.
[4] Schettini R. ; Ciocca G. and Zuffi S., "A Survey of
Methods for Color Image Indexing and Retrieval in Image
Databases."
[5] Howarth P. and Ruger S., "Evaluation of Texture
Features for Content-Based Image Retrieval," in Third
International Conference, CIVR 2004, Dublin, Ireland, 2004.
[6] K. A. Rosenfeld A., "Digital Picture Processing,"
Academic Press, vol. 1, 1982.
[7] S. S. a. P. J. Hiremath P.S., "Wavelet Based Feature for
Color Texture Classification with application to CBIR," Intl.
Journal of Computer Science and Network Security (IJCSNS), vol.
6, Sep. 2006.
[8] P. S. a. L. Garrido, "Binary Partition Tree as an Efficient
Representation for Image Processing, Segmentation, and
Information Retrieval," IEEE TRANSACTIONS ON IMAGE
PROCESSING, vol. 9, pp. 561-576, 2000.
[9] W. J. C. Ghanbari S., Rabiee H.R., Lucas S.M.,
"Wavelet domain binary partition trees for semantic object
extraction," 2007.
[10] W. R. E. Gonzalez Rafael C., Digital Image Processing:
Prentice Hall, 2002.
[11] Smith J. R. and Chang S., "Tools and Techniques for
Color Image Retrieval," in SPIE, 1996, pp. 1630-1639.
[12] Chiueh T., "Content-based image indexing," in
Proceedings of VLDB '94, Santiago, Chile, 1994, pp. 582-593.
[13] Li X. ; Chen S. ; Shyu M. and Furht B., "An Effective
Content-Based Visual Image Retrieval System," in 26th IEEE
Computer Society International Computer Software and
Applications Conference (COMPSAC), Oxford, 2002, pp. 914-
919.
[14] Stricker M. A. and Orengo M., "Similarity of Color
Images," in SPIE, 1995, pp. 381--392.
[15] J. L. J. Z. Wang, and G. Wiederhold, "SIMPLIcity:
Semantics-Sensitive Integrated Matching for Picture Libraries,"
IEEE Trans. Patt. Anal. Mach. Intell., vol. 23, pp. 947-963, 2001.

